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ABSTRACT

We present a framework for summarizing digital media based on
structural analysis. Though these methods are applicable to gen-
eral media, we concentrate here on characterizing repetitive struc-
ture in popular music. In the first step, a similarity matrix is cal-
culated from inter-frame spectral similarity. Segment boundaries,
such as verse-chorus transitions, are found by correlating a ker-
nel along the diagonal of the matrix. Once segmented, spectral
statistics of each segment are computed. In the second step, seg-
ments are clustered based on the pairwise similarity of their statis-
tics, using a matrix decomposition approach. Finally, the audio is
summarized by combining segments representing the clusters most
frequently repeated throughout the piece. We present results on a
small corpus showing more than 90% correct detection of verse
and chorus segments.

1. INTRODUCTION

Digital music has recently become explosively popular. Many peo-
ple routinely amass substantial collections of digital audio files. In
a recent Ipsos-Reid survey, more than half of consumers aged 25–
34 have downloaded MP3 files onto home computers, storing on
average more than 700 files [1]. Popular hand-held music players
can now store 30 GB of compressed music, or several thousand
files. Locating and browsing thousands of tracks is a consider-
able data management problem, and requires new technologies and
tools to support browsing and searching.

Here we present a novel approach to automatically summarize
a music track by its most-repeated segments. In popular music,
these will be the most memorable parts of the song, typically the
verse and chorus. Though there are many variations, a typical song
starts with an introductory section, followed by a verse and chorus.
These are usually repeated, then followed by a “bridge” or “middle
eight [bars],” and often the verse and chorus to end. By represent-
ing a longer song by the characteristic verse and chorus, we can
enable rapid audio browsing through many files. Automatically
inferred structure also enables rapid browsing within an audio file
by advancing to the next segment, or to the next segment that is
new to the listener.

This paper presents analytic methods to find repetitive struc-
ture in digital audio files. Our approach starts with a similarity
matrix [2, 3] that captures all possible pairwise similarity measures
between time windows in the source audio. A key advantage here
is that the data is effectively used to model itself. Throughout, the
algorithms presented are unsupervised and need minimal assump-
tions regarding the source audio. The framework is extremely gen-
eral, and can be used to analyze any ordered media such as video
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Figure 1: Embedding an audio stream into a two-dimensional sim-
ilarity matrix.

or text as well as audio.
In this paper, Section 2 reviews related work on summariza-

tion and structural analysis. Section 3 introduces similarity analy-
sis and details how similarity matrices are constructed from audio.
We also review audio segmentation via kernel correlation. Sec-
tion 4 describes how audio segments are statistically clustered. We
present experimental results showing that segments can be reliably
located and classified. Section 5 describes how song structure can
be used to automatically construct a representative summary ex-
cerpt or “audio thumbnail.”

2. RELATED WORK

2.1. Music Summarization

Chu and Logan present methods for music summarization in [5].
The first method clusters uniformly spaced segments. After the
audio is parameterized into Mel frequency cepstral coefficients
(MFCCs), segments are clustered by thresholding a relative en-
tropy distance measure between them. The longest component of
the most frequent cluster is returned as the summary. Key dif-
ferences with the work in this paper are that our approach uses
variable length segments to perform our clustering. As a result,
we do not weigh segments’ importance by their lengths, but rather
by their frequency of repetition. Also, our clustering is based on
a matrix decomposition that does not require the use of a thresh-
old. In the second method, they apply a hidden Markov model
to jointly segment and cluster the data, based on manually seg-
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mented training data. In contrast, our technique uses the digital
audio to model itself for both segmentation and clustering. Tzane-
takis and Cook [6] discuss “audio thumbnailing” using a segmen-
tation based method in which short segments near segmentation
boundaries are concatenated. This is similar to “time-based com-
pression” of speech [7]. In contrast, we use complete segments for
summaries, and we do not alter playback speed. Previous work by
the authors has also used similarity matrices for excerpting, with-
out an explicit segmentation step [8]. The present method results
in a structural characterization, and is far more likely to start or
end the summary excerpts on actual segment boundaries. We have
also presented an earlier version of this approach, however with
less complete validation [4].

2.2. Media Segmentation, Clustering, & Similarity Analysis

Our clustering approach is inspired by methods developed for seg-
menting still images [9]. Using color, texture, or spatial sim-
ilarity measures, a similarity matrix is computed between pixel
pairs. This similarity matrix is then factorized into eigenvectors
and eigenvalues. Ideally, the foreground and background pixels ex-
hibit within-class similarity and between-class dissimilarity. Thus
thresholding the eigenvector corresponding to the largest eigen-
value can classify the pixels into foreground and background. In
contrast, we employ a related technique to cluster time-ordered
data. Gong and Liu have presented an SVD based method for
video summarization [10], by factorizing a rectangular time-feature
matrix, rather than a square similarity matrix. Cutler and Davis use
affinity matrices to analyze periodic motion using a correlation-
based method [11].

3. SIMILARITY ANALYSIS

3.1. Constructing the similarity matrix

Similarity analysis is a non-parametric technique for studying the
global structure of time-ordered streams. First, we calculate 80-bin
spectrograms from the short time Fourier transform (STFT) of 0.05
second non-overlapping frames in the source audio. Each frame is
Hamming-windowed, and the logarithm of the magnitude of the
FFT is binned into an 80-dimensional vector. We have also ex-
perimented with MFCCs and subspace representations computed
using principal components analysis of spectral data. Here, the
parameterization is optimized for analysis, rather than for com-
pression, transmission, or reconstruction. The sole requirement is
that similar source audio samples produce similar features.

The similarity between all pairwise combinations of spectral
vectors is quantitatively measured. Represent theB-dimensional
spectral data computed forN windows of a digital audio file by the
vectors{vi : i = 1, · · · , N} ⊂ IRB . Using the cosine similarity
measure, we embed the resulting similarity data in a square matrix,
S as illustrated in Figure 1. The elements ofS are

S(i, j) = dcos(vi, vj) =
< vi, vj >

|vi||vj |
. (1)

The time axis runs on the horizontal (left to right) and vertical
(top to bottom) axes ofS and along its main diagonal, where (self)
similarity is maximal. The top panel of Figure 2 shows a similarity
matrix computed from the song “The Magical Mystery Tour” by
The Beatles using the cosine distance measure and low frequency
spectrograms. Pixels are colored brighter with increasing simi-
larity, so that segments of similar audio samples appear as bright
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Figure 2: Top: The similarity matrix computed from the song
“The Magical Mystery Tour ” by The Beatles. Bottom: the time-
indexed novelty score produced by correlating the checkerboard
kernel along the main diagonal of the similarity matrix.

squares along the main diagonal. Brighter rectangular regions off
the main diagonal indicate similarity between segments.

3.2. Audio Segmentation

The structure ofS can be analyzed to find segment boundaries
[12]. Generally, the boundary between two coherent audio seg-
ments produces a checkerboard pattern. The two segments will
exhibit high within-segment (self) similarity, producing adjacent
square regions of high similarity along the main diagonal ofS.
The two segments will also produce rectangular regions of low
between-segment (cross) similarity off the main diagonal. The
boundary is the crux of this checkerboard pattern.

To identify these patterns inS, we take a matched-filter ap-
proach. A Gaussian-tapered “checkerboard” kernel is correlated
along the main diagonal of the similarity matrix. Because peaks
in the correlation indicate locally novel audio, we refer to the cor-
relation as a novelty score. Figure 2 shows the similarity matrix
computed for “The Magical Mystery Tour” and the correspond-
ing novelty score. Large peaks are detected in the time-indexed
correlation and labeled as segment boundaries. For segmentation,
we need only calculate a diagonal strip of the similarity matrix
with the width of the checkerboard kernel. Throughout, we use a
256× 256 kernel.
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4. STATISTICAL SEGMENT CLUSTERING

Above, we compute a partial time-indexed similarity matrix to de-
tect audio segment boundaries. In the second step, we use sim-
ilarity analysis to efficiently cluster the detected segments. This
process both locates repeated segments separated in time, and cor-
rects over-segmentation errors. Given segment boundaries, we can
easily calculate a full similarity matrix of substantially lower di-
mension, indexed by segment instead of time. To estimate the
similarity between variable length segments, we use a statistical
measure.

We assume only that the audio or music exhibits instances of
similar segments, possibly separated by other segments. For ex-
ample, a common popular song structure isABABCAB , whereA
is a verse segment,B is the chorus, andC is the bridge. We aim to
group the segments of such a song into three clusters correspond-
ing to the three different parts. Once this is done, the song could
be summarized by concatenating excerpt segments representing
each cluster. In this example, the sequenceABC is a significantly
shorter summary containing essentially all the information in the
song.

To cluster the segments, we factor the segment similarity ma-
trix to find repeated or substantially similar groups of segments.
The Singular Value Decomposition (SVD) is a natural way to do
this. Clustering via factorized similarity matrices is a technique
originally developed for still image segmentation; for a survey see
[9]. This work suggests that we simply apply the SVD to the full
sample-indexed similarity matrix to detect clusters of similar sam-
ples, like those visible in Figure 2. This is computationally inten-
sive, however; a three minute song requires computing and factor-
ing a3600× 3600 similarity matrix. This motivates our approach
of segmentation followed by segment-level clustering. In this case,
the SVD is computed for a similarity matrix whose dimension is
on the order of10 × 10. This results in an computational savings
of several orders of magnitude.

We start with a set of segments{p1, · · · , pP } of variable
lengths as found above. Each segment is determined by a start and
end time. We compute the mean vector,µi, and covariance ma-
trix, Σi, from the spectral data of each segment,pi. Inter-segment
similarity is calculated using the Kullback-Leibler (KL) distance
[13] between these statistics for each pair of segments. Denote
the KL distance between the twoB-dimensional normal densities
G(µi, Σi) and G(µj , Σj) as dKL(G(µi, Σi)‖G(µj , Σj)). The
similarity between segmentspi andpi is calculated as

dseg(pi, pj) = exp(− dKL(G(µi, Σi)‖G(µj , Σj))

− dKL(G(µj , Σj)‖G(µi, Σi))) .
(2)

wheredseg(·, ·) ∈ (0, 1] and is symmetric. These properties are
desirable for the clustering technique detailed below.

For clustering, the KL similarity between each pair of seg-
ments is embedded in asegment-indexedsimilarity matrix,SS :

SS(i, j) = dseg(pi, pj) i, j = 1, · · · , P .

The top panel of Figure 3 shows the segment similarity matrixSS

for the song “The Magical Mystery Tour.” We then compute the
SVD of SS :

SS = UΛVt . (3)

whereU andV are orthogonal matrices andΛ is a diagonal matrix
whose diagonal elements are the singular values ofSS : Λii = λi.
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Figure 3: Top: Segment-indexed similarity matrixSS computed
for “The Magical Mystery Tour” showing repeated segments. Bot-
tom: The bar graph shows the vectorsb1, · · · , b5 computed ac-
cording to (6). The maximal vector is used to assign each segment
to a segment cluster using Algorithm 1.

We use the singular values to estimate the rank ofSS , denotedK,
as the number of singular values greater than one.

The SVD provides the optimal rank-K approximation toSS :

SS(i, j) =

K∑
k=1

λkU(i, k)V(j, k) (4)

=

K∑
k=1

Bk(i, j) (5)

The terms in this sum are ordered by decreasing singular value,
and hence, by the amount of structure inSS for which they ac-
count. The rank estimation ensures that we account for the essen-
tial structure of the stream, while excluding the fine or unrepeated
structures.

To cluster the segments, we sum the rows of the terms in (5):

bk(j) =

P∑
i=1

Bk(i, j) , j = 1, · · · , P . (6)

We evaluatebk for k = 1, · · · , K. The values ofbk(j) indicate
the similarity of segmentj to (all) the segments in thekth segment
cluster. The maximal vector indicates the cluster to which each
segment in the song is assigned. Specifically, we assign theith

segment to clusterk∗ such that

k∗ = ArgMax
k=1,··· ,K

bk(i) . (7)
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Table 1: Breakdown of experimental results. “V” and “C” columns
denote verse and chorus occurrences, respectively.

Song Manual Automatic
Title Artist V C V C

Wild Honey U2 3 3 3 3
Mystery Tour The Beatles 3 3 3 3
Tahitian Moon Perry Farell 3 3 3 3
Lucy in the Sky The Beatles 4 3 3 3

The Zephyr Song Chili Peppers 3 3 2 3
Hash Pipe Weezer 2 3 2 3
Optimistic Radiohead 2 3 2 3

The bottom panel of Figure 3 showsb1, · · · , b5 for “The Magical
Mystery Tour”. In our example, the clusters corresponding tob1

andb2 are the verse and chorus clusters, respectively, each includ-
ing three segments. The introduction of segment 1 is assigned to
cluster 3. The bridge segment (segment 6) and coda (segment 9)
are assigned to clusters 5 and 4, respectively.

5. STRUCTURAL SUMMARIZATION AND
SEGMENTATION RESULTS

In this Section, we explore ways to construct musical summaries
given the song structure deduced as above. Intuition suggests that
the most-repeated segments would serve as a good summary of
the song. Segments in clusters with the largest singular values
are most likely to be repeated, so we choose the two with largest
singular values. For each of these, we contribute the segment with
the maximal value in the corresponding cluster indicatorbi of (6)
to the summary. For cluster selection, we have also experimented
with the clusters with maximal off-diagonal elements, indicating
the segments that are most faithfully repeated in the song.

This is only one of many possible ways to construct audio
summaries from the inferred song structure. We could delete all
repeated segments, thus ensuring that all the information in the
song is included without redundancy. This is analogous to includ-
ing one segment for each cluster. We could select a subset of these
segments to satisfy temporal constraints, such as a maximum sum-
mary length. We can also integrate knowledge of the ordering of
the segments and clusters, application-specific constraints, or user
preferences into the summarization process.

We also use (7) and a heuristic that predicts that the cluster
with the first occurring segment is the verse cluster, and the sec-
ond is the chorus cluster. Applied to a test set of seven popular
songs, this approach correctly segmented and labeled over 90% of
the verse and chorus segments (39/43 = 90.7% recall rate within
the songs), with no mislabelling of non-verse or non-chorus seg-
ments (100 % precision). For brevity, we only list the songs and
results in Table 1. Classification was compared with manually-
labeled ground truth derived from the automatically detected seg-
ments. Space does not permit a fuller discussion, but readers are
invited to examine more detailed results, including audio excerpts,
on our web site [14].

6. CONCLUSION

We have presented a framework for determining temporal struc-
ture from self-similarity. This approach makes minimal assump-

tions regarding the content or structure of the source. Given an ap-
propriate parameterization and distance measures, these methods
could analyze other media types such as video. In future work, we
plan to use structural information for music information retrieval
and genre classification. Shorter summaries that contain the gist
of longer works can usefully serve as “retrieval proxies,” where
computationally-intensive indexing can be performed on the sum-
mary rather than the longer work. Hopefully this will result in
more rapid indexing time at no loss in retrieval recall. This appli-
cation also provides opportunities for objectively measuring sum-
marization success. A particular application of this work is to en-
able rapid browsing of large music collections, for example on a
consumer’s handheld MP3 player. By quickly skipping ahead to
the next musical section, or playing only the chorus of a song in
a “music scan” mode, we expect that these summaries will help
users to quickly and easily locate desired music.
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